Partial Synthesis of Gibberellin A_{15} Norketone from 7-Hydroxykaurenolide

By B. E. CROSS* and I. L. GATFIELD

(Department of Organic Chemistry, The University, Leeds LS2 9]T)

Summary The structure of gibberellin A_{15} has been confirmed by the synthesis of gibberellin A_{15} norketone from the more readily available 7-hydroxykaurenolide.

GIBBERELLIN A15, a minor metabolite of Gibberella fujikuroi, was tentatively assigned¹ the structure (1). More recently, the structure (4) of gibberellin A_{24} was derived,² and rests, in part, upon that of gibberellin A₁₅. We describe a partial synthesis of gibberellin A_{15} norketone (2) from 7-hydroxykaurenolide³ (7), which not only rigorously establishes the structure and stereochemistry of gibberellin A_{15} , and therefore also of gibberellin A_{24} , but makes the former available for further study.

7-Hydroxykaurenolide was transformed⁴ into the aldehydo-acid (5), which, after reduction with sodium borohydride to the alcohol $(6)^{\dagger}$ and oxidation of the latter with osmium tetroxide-sodium metaperiodate, yielded the nor-ketone (8). The acetate (9) of the norketone (8) was converted into the amide (10) and the latter was photolysed⁵ in benzene in the presence of lead tetra-acetate and iodine. Isolation of the lactonic product in the usual way⁵ afforded the gummy lactone (3), which on oxidation with Jones' reagent gave the acid (2), m.p. 260-264° (decomp.), τ (CDCl₃) 8.81 (s, 1 β -methyl), 7.70 and 7.17 (AB quartet, J 13 Hz, 10,10a-protons), 5.91 and 5.52 (AB quartet, J 13 Hz, -CH2-O-). The acid was identical (m.p., i.r., and mass spectrum) with a specimen of gibberellin A_{15} norketone prepared by oxidation of gibberellin A_{15} with osmium tetroxide-sodium metaperiodate.

(Received, November 20th, 1969; Com. 1765.)

† All new compounds gave satisfactory elemental analyses, or accurate masses, and spectral data consistent with their structures.

- ¹ J. R. Hanson, Tetrahedron, 1967, 23, 733.
- ¹ D. N. Harrison, J. *Partmetron*, 1901, 23, 135.
 ² D. M. Harrison, J. MacMillan, and R. H. B. Galt, *Tetrahedron Letters*, 1968, 3137.
 ³ B. E. Cross, R. H. B. Galt, and J. R. Hanson, *J. Chem. Soc.*, 1963, 2944.
 ⁴ B. E. Cross, K. Norton, and J. C. Stewart, *J. Chem. Soc.* (C), 1968, 1054.
 ⁵ D. H. R. Barton, A. L. J. Beckwith, and A. Goosen, *J. Chem. Soc.*, 1965, 181.